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Lightlike p-branes (LL-branes) with dynamical (variable) tension allow simple and ele-
gant Polyakov-type and dual to it Nambu–Goto-like worldvolume action formulations.
Here we first briefly describe the dynamics of LL-branes as test objects in various phys-
ically interesting gravitational backgrounds of black hole type, including rotating ones.
Next we show that LL-branes are the appropriate gravitational sources that provide
proper matter energy–momentum tensors in the Einstein equations of motion needed to
generate traversable wormhole solutions, in particular, self-consistent cylindrical rotat-
ing wormholes, with the LL-branes occupying their throats. Here a major role is being
played by the dynamical LL-brane tension which turns out to be negative but may
be of arbitrary small magnitude. As a particular solution we obtain traversable worm-
hole with Schwarzschild geometry generated by a LL-brane positioned at the wormhole
throat, which represents the correct consistent realization of the original Einstein–Rosen
“bridge” manifold.

Keywords: Traversable wormholes; non-Nambu–Goto lightlike branes; dynamical brane
tension; black hole’s horizon “straddling”.
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1. Introduction

Lightlike branes (LL-branes) are very interesting dynamical systems which play

an important role in the description of various physically important phenomena

in general relativity, such as: (i) impulsive lightlike signals arising in cataclysmic
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astrophysical events;1 (ii) the “membrane paradigm”2 of black hole physics; (iii) the

thin-wall approach to domain walls coupled to gravity.3–5

More recently, LL-branes became significant also in the context of modern

nonperturbative string theory, in particular, as the so-called H-branes describing

quantum horizons (black hole and cosmological),6 as Penrose limits of baryonic

D( = Dirichlet) branes,7 etc. (see also Refs. 8–10).

In the original papers3–5 LL-branes in the context of gravity and cosmology have

been extensively studied from a phenomenological point of view, i.e. by introducing

them without specifying the Lagrangian dynamics from which they may originate.a

On the other hand, we have proposed in a series of recent papers12–19 a new class

of concise Lagrangian actions, providing a derivation from first principles of the

LL-brane dynamics.

There are several characteristic features of LL-branes which drastically distin-

guish them from ordinary Nambu–Goto branes:

(i) They describe intrinsically lightlike modes, whereas Nambu–Goto branes de-

scribe massive ones.

(ii) The tension of the LL-brane arises as an additional dynamical degree of free-

dom, whereas Nambu–Goto brane tension is a given ad hoc constant. The

latter characteristic feature significantly distinguishes our LL-brane models

from the previously proposed tensionless p-branes (for a review, see Ref. 20)

which rather resemble a p-dimensional continuous distribution of massless

point-particles.

(iii) Consistency of LL-brane dynamics in a spherically or axially symmetric

gravitational background of codimension one requires the presence of an event

horizon which is automatically occupied by the LL-brane (“horizon straddling”

according to the terminology of Ref. 4).

(iv) When the LL-brane moves as a test brane in spherically or axially sym-

metric gravitational backgrounds its dynamical tension exhibits exponential

“inflation/deflation” time behavior (Refs. 16, 17 and Eqs. (33), (44) and (54)

below) — an effect similar to the “mass inflation” effect around black hole

horizons.21,22

In the present paper we will explore the novel possibility of employing LL-

branes as natural self-consistent gravitational sources for wormhole space–times, in

other words, generating wormhole solutions in self-consistent bulk gravity-matter

systems coupled to LL-branes through dynamically derived worldvolume LL-brane

stress–energy tensors. For a review of wormhole space–times, see Refs. 23–26.

The possibility of a “wormhole space–time” was first hinted at in the work

of Einstein and Rosen,27 where they considered matching at the horizon of two

aIn a more recent paper11 brane actions in terms of their pertinent extrinsic geometry have been
proposed which generically describe non-lightlike branes, whereas the lightlike branes are treated
as a limiting case.
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identical copies of the exterior Schwarzschild space–time region (subsequently called

Einstein–Rosen “bridge”). The original Einstein–Rosen “bridge” manifold appears

as a particular case of the construction of spherically symmetric wormholes pro-

duced by LL-branes as gravitational sources (Refs. 18, 19 and Sec. 4 below). The

main lesson here is that consistency of Einstein equations of motion yielding the

original Einstein–Rosen “bridge” as well-defined solution necessarily requires the

presence of LL-brane energy–momentum tensor as a source on the right-hand side.

Thus, the introduction of LL-brane coupling to gravity brings the original Einstein–

Rosen construction in Ref. 27 to a consistent completion (see the Appendix for

details).

Let us particularly emphasize that here and in what follows we consider the

Einstein–Rosen “bridge” in its original formulation in Ref. 27 as a four-dimensional

space–time manifold consisting of two copies of the exterior Schwarzschild space–

time region matched along the horizon.b

A more complicated example of a spherically symmetric wormhole with

Reissner–Nordström geometry has also been presented in Refs. 18 and 19, where two

copies of the outer Reissner–Nordström space–time region are matched via LL-brane

along what used to be the outer horizon of the full Reissner–Nordström manifold

(see also Sec. 4 below). In this way we obtain a wormhole solution which com-

bines the features of the Einstein–Rosen “bridge” on the one hand (with wormhole

throat at horizon), and the features of Misner–Wheeler wormholes,31 i.e. exhibiting

the so-called “charge without charge” phenomenon,c on the other hand.

In the present paper the results of Refs. 18 and 19 will be extended to the case

of rotating (and charged) wormholes. Namely, we will construct rotating cylindri-

cally symmetric wormhole solutions by matching two copies of the outer region of

rotating cylindrically symmetric (charged) black hole via rotating LL-branes sitting

at the wormhole throat which in this case is the outer horizon of the corresponding

rotating black hole. Let us stress again that in doing so we will be solving Einstein

equations of motion systematically derived from a well-defined action principle,

i.e. a Lagrangian action describing bulk gravity–matter system coupled to a LL-

brane, so that the energy–momentum tensor on the r.h.s. of Einstein equations

bThe nomenclature of “Einstein–Rosen bridge” in several standard textbooks (e.g. Ref. 28) uses
the Kruskal–Szekeres manifold. The latter notion of “Einstein–Rosen bridge” is not equivalent
to the original construction in Ref. 27. Namely, the two regions in Kruskal–Szekeres space–time

corresponding to the outer Schwarzschild space–time region (r > 2m) and labeled (I) and (III) in
Ref. 28 are generally disconnected and share only a two-sphere (the angular part) as a common
border (U = 0, V = 0 in Kruskal–Szekeres coordinates), whereas in the original Einstein–Rosen
“bridge” construction the boundary between the two identical copies of the outer Schwarzschild
space–time region (r > 2m) is a three-dimensional hypersurface (r = 2m).
cMisner and Wheeler31 realized that wormholes connecting two asymptotically flat space times
provide the possibility of “charge without charge,” i.e. electromagnetically nontrivial solutions
where the lines of force of the electric field flow from one universe to the other without a source
and giving the impression of being positively charged in one universe and negatively charged in
the other universe.
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will contain as a crucial piece the explicit worldvolume stress–energy tensor of the

LL-brane given by the LL-brane worldvolume action.

In Sec. 2 of the present paper we briefly review our construction of LL-brane

worldvolume actions for arbitrary worldvolume dimensions.

In Sec. 3 we discuss the properties of LL-brane dynamics as test branes moving

in generic spherically or axially symmetric gravitational backgrounds. In the present

paper we concentrate on the special case of codimension one LL-branes. Here con-

sistency of the LL-brane dynamics dictates that the bulk space–time must pos-

sess an event horizon which is automatically occupied by the LL-brane (“horizon

straddling”). In the case of rotating black hole backgrounds the test LL-brane

rotates along with the rotation of the horizon. Also, similarly to the nonrotat-

ing case we find exponential “inflation/deflation” of the test LL-brane’s dynamical

tension.

In Sec. 4 we consider self-consistent systems of bulk gravity and matter inter-

acting with LL-branes. We present the explicit construction of wormhole solutions

to the Einstein equations with spherically symmetric or rotating cylindrically sym-

metric geometry, generated through the pertinent LL-brane energy–momentum

tensor.

In Sec. 5 we briefly describe the traversability of the newly found rotating cylin-

drical wormholes.

In the Appendix we first show that the Einstein–Rosen “bridge” solution in

terms of the original coordinates introduced in Ref. 27 does not satisfy the vacuum

Einstein equations due to an ill-defined δ-function contribution at the throat

appearing on the r.h.s. — a would-be “thin shell” matter energy–momentum tensor.

Then we show how our present construction of wormhole solutions via LL-branes

at their throats resolves the above problem and furnishes a satisfactory comple-

tion of the original construction of Einstein–Rosen “bridge.”27 In other words, the

fully consistent formulation of the original Einstein–Rosen “bridge” manifold as two

identical copies of the exterior Schwarzschild space–time region matched along the

horizon must include a gravity coupling to a LL-brane, which produces the proper

surface stress–energy tensor (derived from a well-defined worldvolume Lagrangian)

necessary for the “bridge” metric to satisfy the pertinent Einstein equations every-

where, including at the throat.

2. Lightlike Branes: Worldvolume Action Formulations

In a series of previous papers12–19 we proposed manifestly reparametrization invari-

ant worldvolume actions describing intrinsically lightlike p-branes for any worldvol-

ume dimension (p + 1):

S = −
∫

dp+1σ Φ

[

1

2
γab∂aXµ∂bX

νGµν(X) − L(F 2)

]

. (1)

Here the following notions and notations are used:
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• Φ is alternative non-Riemannian integration measure density (volume form) on

the p-brane worldvolume manifold:

Φ ≡ 1

(p + 1)!
εa1···ap+1Ha1···ap+1(B) ,

Ha1···ap+1(B) = (p + 1)∂[a1
Ba2···ap+1]

(2)

instead of the usual
√−γ. Here γab (a, b = 0, 1, . . . , p) indicates the intrinsic

Riemannian metric on the worldvolume, and γ = det ‖γab‖. Ha1···ap+1(B) denotes

the field-strength of an auxiliary worldvolume antisymmetric tensor gauge field

Ba1···ap
of rank p. As a special case one can build Ha1···ap+1 in terms of p + 1

auxiliary worldvolume scalar fields
{

ϕI
}p+1

I=1
:

Φ ≡ 1

(p + 1)!
εI1···Ip+1ε

a1···ap+1∂a1ϕ
I1 · · ·∂ap+1ϕ

Ip+1 . (3)

Note that γab is independent of the auxiliary worldvolume fields Ba1···ap
or ϕI .

The alternative non-Riemannian volume form (2) has been first introduced in

the context of modified standard (non-lightlike) string and p-brane models in

Refs. 29 and 30.

• Xµ(σ) are the p-brane embedding coordinates in the bulk D-dimensional space–

time with bulk Riemannian metric Gµν(X) with µ, ν = 0, 1, . . . , D − 1; (σ) ≡
(σ0 ≡ τ, σi) with i = 1, . . . , p; ∂a ≡ ∂

∂σa .

• gab is the induced metric:

gab ≡ ∂aXµ∂bX
νGµν(X) , (4)

which becomes singular on-shell (manifestation of the lightlike nature, cf. Eq. (10)

below).

• L(F 2) is the Lagrangian density of another auxiliary (p− 1)-rank antisymmetric

tensor gauge field Aa1···ap−1 on the worldvolume with p-rank field-strength and

its dual:

Fa1···ap
= p∂[a1

Aa2···ap] , F ∗a =
1

p!

εaa1···ap

√−γ
Fa1···ap

. (5)

L(F 2) is arbitrary function of F 2 with the short-hand notation:

F 2 ≡ Fa1···ap
Fb1···bp

γa1b1 · · · γapbp . (6)

Let us note the simple identity:

Fa1···ap−1bF
∗b = 0 , (7)

which will play a crucial role in the sequel.
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Rewriting the action (1) in the following equivalent form:

S = −
∫

dp+1σ χ
√−γ

[

1

2
γab∂aXµ∂bX

νGµν(X) − L(F 2)

]

, χ ≡ Φ√−γ
(8)

with Φ the same as in (2), we find that the composite field χ plays the role of a

dynamical (variable) brane tension. Let us note that the notion of dynamical brane

tension has previously appeared in different contexts in Refs. 32–34.

Now let us consider the equations of motion corresponding to (1) w.r.t. Ba1···ap
:

∂a

[

1

2
γcdgcd − L(F 2)

]

= 0 → 1

2
γcdgcd − L(F 2) = M , (9)

where M is an arbitrary integration constant. The equations of motion w.r.t. γab

read:

1

2
gab − F 2L′(F 2)

[

γab −
F ∗

a F ∗
b

F ∗2

]

= 0 , (10)

where F ∗a is the dual field strength (5). In deriving (10) we made an essential use

of the identity (7).

Before proceeding, let us mention that both the auxiliary worldvolume field

Ba1···ap
entering the non-Riemannian integration measure density (2), as well as

the intrinsic worldvolume metric γab are nondynamical degrees of freedom in the

action (1), or equivalently, in (8). Indeed, there are no (time-)derivatives w.r.t. γab,

whereas the action (1) (or (8)) is linear w.r.t. the velocities ∂0Ba1···ap
. Thus, (1)

is a constrained dynamical system, i.e. a system with gauge symmetries including

the gauge symmetry under worldvolume reparametrizations, and both Eqs. (9) and

(10) are in fact nondynamical constraint equations (no second-order time deriva-

tives present). Their meaning as constraint equations is best understood within

the framework of the Hamiltonian formalism for the action (1). The latter can

be developed in strict analogy with the Hamiltonian formalism for a simpler class

of modified non-lightlike p-brane models based on the alternative non-Riemannian

integration measure density (2), which was previously proposed in Ref. 35 (for

details, we refer to Secs. 2 and 3 of Ref. 35). In particular, Eq. (10) can be viewed

as p-brane analogues of the string Virasoro constraints.

There are two important consequences of Eqs. (9), (10). Taking the trace in (10)

and comparing with (9) implies the following crucial relation for the Lagrangian

function L(F 2):

L(F 2) − pF 2L′(F 2) + M = 0 , (11)

which determines F 2 (6) on-shell as certain function of the integration constant M

(9), i.e.

F 2 = F 2(M) = const . (12)
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The second and most profound consequence of Eqs. (10) is that the induced

metric (4) on the worldvolume of the p-brane model (1) is singular on-shell (as

opposed to the induced metric in the case of ordinary Nambu–Goto branes):

gabF
∗b = 0 , (13)

i.e. the tangent vector to the worldvolume F ∗a∂aXµ is lightlike w.r.t. metric of

the embedding space–time. Thus, we arrive at the following important conclusion:

every point on the surface of the p-brane (1) moves with the speed of light in a time-

evolution along the vector-field F ∗a which justifies the name LL-brane (Lightlike-

brane) model for (1).

Remark. Let us stress the importance of introducing the alternative non-

Riemannian integration measure density in the form (2). If we would have started

with worldvolume LL-brane action in the form (8) where the tension χ would be

an elementary scalar field (instead of being a composite one — a ratio of two scalar

densities as in the second relaton in (8)), then variation w.r.t. χ would produce

second Eq. (9) with M identically zero. This in turn by virtue of the constraint (11)

(with M = 0) would require the Lagrangian L(F 2) to assume the special fractional

function form L(F 2) = (F 2)1/p. In this special case the action (8) with elementary

field χ becomes in addition manifestly invariant under Weyl (conformal) symmetry :

γab → γ′
ab = ργab, χ → χ′ = ρ

1−p

2 χ. This special case of Weyl-conformally invariant

LL-branes has been discussed in our older papers.12,13

Before proceeding let us point out that we can add12–15 to the LL-brane action

(1) natural couplings to bulk Maxwell and Kalb–Ramond gauge fields. The latter

do not affect Eqs. (9) and (10), so that the conclusions about on-shell constancy of

F 2 (12) and the lightlike nature (13) of the p-branes under consideration remain

unchanged.

Further, the equations of motion w.r.t. worldvolume gauge field Aa1···ap−1 (with

χ as defined in (8) and accounting for the constraint (12)) read:

∂[a

(

F ∗
b]χ

)

= 0 . (14)

They allow us to introduce the dual “gauge” potential u:

F ∗
a = const

1

χ
∂au , (15)

enabling us to rewrite Eq. (10) (the lightlike constraint) in terms of the dual poten-

tial u in the form:

γab =
1

2a0
gab −

(2a0)
p−2

χ2
∂au∂bu , a0 ≡ F 2L′(F 2)

∣

∣

F 2=F 2(M)
= const (16)

(L′(F 2) denotes derivative of L(F 2) w.r.t. the argument F 2). From (15) and (12)

we obtain the relation:

χ2 = −(2a0)
p−2γab∂au∂bu , (17)
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and the Bianchi identity ∇aF ∗a = 0 becomes:

∂a

(

1

χ

√−γγab∂bu

)

= 0 . (18)

Finally, the Xµ equations of motion produced by the (1) read:

∂a

(

χ
√
−γγab∂bX

µ
)

+ χ
√
−γγab∂aXν∂bX

λΓµ
νλ(X) = 0 , (19)

where Γµ
νλ = 1

2Gµκ(∂νGκλ + ∂λGκν − ∂κGνλ) is the Christoffel connection for the

external metric.

Now it is straightforward to prove that the system of Eqs. (17)–(19) for

(Xµ, u, χ), which are equivalent to the equations of motion (9)–(14), (19) resulting

from the original Polyakov-type LL-brane action (1), can be equivalently derived

from the following dual Nambu–Goto-type worldvolume action:

SNG = −
∫

dp+1σ T

√

− det

∥

∥

∥

∥

gab −
1

T 2
∂au∂bu

∥

∥

∥

∥

. (20)

Here gab is the induced metric (4); T is dynamical tension simply related to the

dynamical tension χ from the Polyakov-type formulation (8) as T 2 = χ2

(2a0)p−1 with

a0 — same constant as in (16).

In what follows we will consider the initial Polyakov-type form (1) of the LL-

brane worldvolume action. Worldvolume reparametrization invariance allows to

introduce the standard synchronous gauge-fixing conditions:

γ0i = 0 (i = 1, . . . , p) , γ00 = −1 . (21)

Also, we will use a natural ansatz for the “electric” part of the auxiliary worldvolume

gauge field-strength:

F ∗i = 0 (i = 1, . . . , p) , i.e. F0i1 ···ip−1 = 0 , (22)

meaning that we choose the lightlike direction in Eq. (13) to coincide with the brane

proper-time direction on the worldvolume (F ∗a∂a ∼ ∂τ ). The Bianchi identity

(∇aF ∗a = 0) together with (21), (22) and the definition for the dual field-strength

in (5) imply:

∂0γ
(p) = 0 where γ(p) ≡ det ‖γij‖ . (23)

Then LL-brane equations of motion acquire the form (recall definition of gab (4)):

g00 ≡ ẊµGµνẊν = 0 , g0i = 0 , gij − 2a0 γij = 0 (24)

(the latter are analogs of Virasoro constraints), where the M -dependent constant

a0 (the same as in (16)) must be strictly positive;

∂iχ = 0 (remnant of Eq. (14)) ; (25)

−
√

γ(p)∂0(χ∂0X
µ) + ∂i

(

χ
√

γ(p)γij∂jX
µ
)

+ χ
√

γ(p)(−∂0X
ν∂0X

λ + γkl∂kXν∂lX
λ)Γµ

νλ = 0 . (26)
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3. Lightlike Test-Branes in Spherically and Axially Symmetric

Gravitational Backgrounds

First, let us consider codimension one LL-brane moving in a general spherically

symmetric background:

ds2 = −A(t, r)(dt)2 + B(t, r)(dr)2 + C(t, r)hij (θ)dθi dθj , (27)

i.e. D = (p+1)+1, with the simplest nontrivial ansatz for the LL-brane embedding

coordinates Xµ(σ):

t = τ ≡ σ0 , r = r(τ) , θi = σi (i = 1, . . . , p) . (28)

The LL-brane equations of motion (16)–(19), taking into account (21) and (22),

acquire the form:

−A + Bṙ2 = 0 , i.e. ṙ = ±
√

A

B
, ∂tC + ṙ∂rC = 0 , (29)

∂τχ + χ

[

∂t ln
√

AB ± 1√
AB

(∂rA + p a0∂r ln C)

]

r=r(τ)

= 0 , (30)

where a0 is the same constant appearing in (16). In particular, we are interested in

static spherically symmetric metrics in standard coordinates:

ds2 = −A(r)(dt)2 + A−1(r)(dr)2 + r2hij(θ)dθi dθj (31)

for which Eqs. (29) yield:

ṙ = 0 , i.e. r(τ) = r0 = const , A(r0) = 0 . (32)

Further, Eq. (30) implies for the dynamical tension:

χ(τ) = χ0 exp

{

∓τ

(

∂rA

∣

∣

∣

∣

r=r0

+
2pa0

r0

)}

, χ0 = const . (33)

Thus, we find a time-asymmetric solution for the dynamical brane tension which

(upon appropriate choice of the signs (∓) depending on the sign of the constant

factor in the exponent on the r.h.s. of (33)) exponentially “inflates” or “deflates”

for large times (for details we refer to Refs. 16 and 17). This phenomenon is an

analog of the “mass inflation” effect around black hole horizons.21,22

Next, let us consider (D = 4)-dimensional Kerr–Newman background metric in

the standard Boyer–Lindquist coordinates (see e.g. Refs. 36–38):

ds2 = −A(dt)2 − 2E dt dϕ +
Σ

∆
(dr)2 + Σ(dθ)2 + D sin2 θ(dϕ)2 , (34)

A ≡ ∆ − a2 sin2 θ

Σ
,

E ≡ a sin2 θ(r2 + a2 − ∆)

Σ
,

D ≡ (r2 + a2)2 − ∆a2 sin2 θ

Σ
,

(35)
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where Σ ≡ r2 + a2 cos2 θ, ∆ ≡ r2 + a2 + e2 − 2mr. Let us recall that the Kerr–

Newman metric (34) and (35) reduces to the Reissner–Nordström metric in the

limiting case a = 0.

For the LL-brane embedding we will use the following ansatz:

X0 ≡ t = τ , r = r(τ) , θ = σ1 , ϕ = σ2 + ϕ̃(τ) . (36)

In this case the LL-brane equations of motion (23), (24) acquire the form:

−A +
Σ

∆
ṙ2 + D sin2 θ ϕ̇2 − 2Eϕ̇ = 0 ,

−E + D sin2 θ ϕ̇ = 0 ,
d

dτ
(DΣ sin2 θ) = 0 .

(37)

Inserting the ansatz (36) into (37) the last Eq. (37) implies:

r(τ) = r0 = const , (38)

whereas the second Eq. (37) yields:

∆(r0) = 0 , ω ≡ ϕ̇ =
a

r2
0 + a2

(39)

Eqs. (38), (39) indicate that:

(i) the LL-brane automatically locates itself on the Kerr–Newman horizon r =

r0 — horizon “straddling” according to the terminology of Ref. 4;

(ii) the LL-brane rotates along with the same angular velocity ω as the Kerr–

Newman horizon.

The first equation in (37) implies that ṙ vanishes on-shell as:

ṙ ' ± ∆(r)

r2
0 + a2

∣

∣

∣

∣

r→r0

. (40)

We will also need the explicit form of the last equation in (24) (using notations

(35)):

γij =
1

2a0

(

Σ 0

0 D sin2 θ

)∣

∣

∣

∣

r=r0,θ=σ1

. (41)

Among the Xµ-equations of motion (26) only the X0-equation yields additional

information. Because of the embedding X0 = τ it acquires the form of a time-

evolution equation for the dynamical brane tension χ:

∂τχ + χ
[

∂τXν∂τXλ − γij∂iX
ν∂jX

λ
]

Γ0
νλ = 0 , (42)

which, after taking into account (36), (38), (39) and the explicit expressions for the

Kerr–Newman Christoffel connection coefficients (Ref. 36), reduces to:

∂τχ + χ2ṙ

[

Γ0
0r +

a

r2
0 + a2

Γ0
rϕ

]

r=r0

= 0 . (43)
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Singularity on the horizon of the Christoffel coefficients (∼ ∆−1) appearing in (43)

is canceled by ∆ in ṙ (40) so that finally we obtain:

∂τχ ± χ
2(r0 − m)

r2
0 + a2

= 0 , i.e. χ = χ0 exp

{

∓2
(r0 − m)

r2
0 + a2

τ

}

. (44)

Thus, we find “mass inflation/deflation” effect (according to the terminology of

Refs. 21 and 22) on the Kerr–Newman horizon via the exponential time dependence

of the dynamical LL-brane tension similar to the “mass inflation/deflation” effect

with LL-branes in spherically symmetric gravitational backgrounds (Eq. (33)).

Now let us consider rotating cylindrical black hole background in D = 4:39,40

ds2 = −A(dt)2 − 2E dt dϕ +
(dr)2

∆
+ D(dϕ)2 + α2r2(dz)2 , (45)

where

A ≡ −ω2r2 + γ2∆ , E ≡ γωr2 − γω

α2
∆ ,

D ≡ γ2r2 − ω2

α4
∆ , ∆ ≡ α2r2 − b

αr
+

c2

α2r2
.

(46)

The physical meaning of the parameters involved is as follows: α2 = − 1
3Λ, i.e. Λ

must be negative cosmological constant; b = 4m with m being the mass per unit

length along the z-axis; c2 = 4λ2, where λ indicates the linear charge density along

the z-axis.

The metric (46) possesses in general two horizons at r = r(±) where ∆
(

r(±)

)

= 0.

Let us note the useful identity which will play an important role in the sequel:

AD + E2 = r2

(

γ2 − ω2

α2

)2

∆ . (47)

For the LL-brane embedding we will use an ansatz similar to the Kerr–Newman

case (36):

X0 ≡ t = τ , r = r(τ) , z = σ1 , ϕ = σ2 + ϕ̃(τ) . (48)

Then the lightlike and Virasoro-like constraint equations of the LL-brane dynamics

(24) in the background (45), (46) (the analogs of Eqs. (37) in the Kerr–Newman

case):

− A +
ṙ2

∆
+ Dϕ̇2 − 2Eϕ̇ = 0 , −E + Dϕ̇ = 0 ,

d

dτ
(Dα2r2) = 0 (49)

imply:

r(τ) = r0 = const , ∆(r0) = 0 , ϕ̇ =
ω

γ
. (50)

Thus, similarly to the Kerr–Newman case:

(i) the LL-brane automatically locates itself on one of the cylindrical black hole

horizons at r = r0 = r(±) (horizon “straddling”);
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(ii) the LL-brane rotates with angular velocity ω/γ along with the rotation of the

cylindrical black hole horizon;

(iii) ṙ vanishes on-shell as:

ṙ ' ±
∣

∣

∣

∣

1

γ

(

γ2 − ω2

α2

)
∣

∣

∣

∣

∆(r)

∣

∣

∣

∣

r→r(±)

(51)

(the overall signs ± on the r.h.s. of (51) are not correlated with the indices (±)

labeling the outer/inner horizon).

Again in complete analogy with the Kerr–Newman case (Eqs. (42), (43)) the

X0-equation of motion (26) reduces to the following time-evolution equation for

the pertinent dynamical brane tension:

∂τχ + χ2ṙ

[

Γ0
0r +

E

D
Γ0

rϕ

]

r=r(±)

= 0 , (52)

where the Christoffel coefficients read:

Γ0
0r =

D∂rA + E∂rE

2(AD + E2)
, Γ0

rϕ =
D∂rE − E∂rD

2(AD + E2)
(53)

with the functions A, D, E as in (45), (46). Taking into account (50), (51) and

the identity (47) we obtain from (52), (53) exponential “inflation/deflation” of the

LL-brane tension in rotating cylindrical black hole background:

χ(τ) = χ0 exp

{

∓τ

∣

∣

∣

∣

1

γ

(

γ2 − ω2

α2

)
∣

∣

∣

∣

∂r∆(r)

∣

∣

∣

∣

r=r(±)

}

(54)

(here again there is no correllation between the overall signs ∓ in the exponent with

the indices (±) labeling the outer/inner horizon).

4. Self-Consistent Wormhole Solutions via Lightlike Branes

Let us now consider a self-consistent bulk Einstein–Maxwell system (with a cosmo-

logical constant) free of electrically charged matter, coupled to a codimension one

LL-brane:

S =

∫

dDx
√
−G

[

R(G)

16π
− Λ

8π
− 1

4
FµνFµν

]

+ SLL . (55)

Here Fµν = ∂µAν − ∂νAµ and SLL is the same LL-brane worldvolume action as

in (8). Thus, the LL-brane will serve as a gravitational source through its energy–

momentum tensor (see Eq. (57) below). The pertinent Einstein–Maxwell equations

of motion read:

Rµν − 1

2
GµνR + ΛGµν = 8π

(

T
(EM)
µν + T

(brane)
µν

)

,

∂ν

(√
−GGµκGνλFκλ

)

= 0 ,

(56)
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where T
(EM)
µν = FµκFνλGκλ − Gµν

1
4FρκFσλGρσGκλ, and the LL-brane energy–

momentum tensor is straightforwardly derived from (8):

T (brane)
µν = −GµκGνλ

∫

dp+1σ
δ(D)(x − X(σ))√

−G
χ
√−γγab∂aXκ∂bX

λ . (57)

The equations of motion of the LL-brane have already been given in (24)–(26).

Using (57) we will now construct traversable wormhole solutions to the Einstein

equations (56) which will combine the features of the Einstein–Rosen “bridge”

(wormhole throat at horizon) and the feature “charge without charge” of Misner–

Wheeler wormholes.31 In doing this we will follow the standard procedure described

in Ref. 23, but with the significant difference that in our case we will solve Einstein

equations following from a self-consistent bulk gravity–matter system coupled to a

LL-brane. In other words, the LL-brane will serve as a gravitational source of the

wormhole by locating itself on its throat as a result of its consistent worldvolume

dynamics (Eq. (32) above).

First we will consider the case with spherical symmetry. To this end let us take

a spherically symmetric solution of (56) of the form (31) in the absence of the LL-

brane (i.e. without T
(brane)
µν on the r.h.s.), which possesses an (outer) event horizon

at some r = r0 (i.e. A(r0) = 0 and A(r) > 0 for r > r0). At this point we introduce

the following modification of the metric (31):

ds2 = −Ã(η)(dt)2 + Ã−1(η)(dη)2

+ (r0 + |η|)2hij(θ)dθi dθj ,

Ã(η) ≡ A(r0 + |η|) ,

(58)

where −∞ < η < ∞. From now on the bulk space–time indices µ, ν will refer to

(t, η, θi) instead of (t, r, θi). The new metric (58) represents two identical copies of

the exterior region (r > r0) of the spherically symmetric space–time with metric

(31), which are sewed together along the horizon r = r0. We will show that the new

metric (58) is a solution of the full Einstein equations (56), including T
(brane)
µν on

the r.h.s. Here the newly introduced coordinate η will play the role of a radial-like

coordinate normal w.r.t. the LL-brane located on the horizon, which interpolates

between two copies of the exterior region of (31) (the two copies transform into

each other under the “parity” transformation η → −η).

Inserting in (57) the expressions for Xµ(σ) from (28) and (32) and taking into

account (16), (21), (22) we get:

T µν
(brane) = Sµν δ(η) (59)

with surface energy–momentum tensor:

Sµν ≡ − χ

(2a0)p/2
[−∂τXµ∂τXν + γij∂iX

µ∂jX
ν ]t=τ,η=0,θi=σi , ∂i ≡

∂

∂σi
, (60)



March 22, 2010 14:53 WSPC/139-IJMPA S0217751X10047762

1418 E. Guendelman et al.

where again a0 is the integration constant parameter appearing in the LL-brane

dynamics (cf. Eq. (16)). Let us also note that unlike the case of test LL-brane

moving in a spherically symmetric background (Eqs. (30) and (33)), the dynamical

brane tension χ in Eq. (60) turns out to be constant. This is due to the fact that

in the present context we have a discontinuity in the Christoffel connection coeffi-

cients across the LL-brane sitting on the horizon (η = 0). The problem in treating

the geodesic LL-brane equations of motion (19), in particular — Eq. (30), can be

resolved following the approach in Ref. 3 (see also the regularization approach in

Ref. 41, App. A) by taking the mean value of the pertinent nonzero Christoffel

coefficients across the discontinuity at η = 0. From the explicit form of Eq. (30) it

is straightforward to conclude that the above mentioned mean values around η = 0

vanish since now ∂r is replaced by ∂/∂η, whereas the metric coefficients depend

explicitly on |η|. Therefore, in the present case Eq. (30) is reduced to ∂τχ = 0.

Let us now separate in (56) explicitly the terms contributing to δ-function sin-

gularities (these are the terms containing second derivatives w.r.t. η, bearing in

mind that the metric coefficients in (58) depend on |η|):

Rµν ≡ ∂ηΓη
µν − ∂µ∂ν ln

√
−G + nonsingular terms

= 8π

(

Sµν − 1

p
GµνSλ

λ

)

δ(η) + nonsingular terms . (61)

The only nonzero contribution to the δ-function singularities on both sides of

Eq. (61) arises for (µν) = (ηη). In order to avoid coordinate singularity on the

horizon it is more convenient to consider the mixed component version of the latter

(with one contravariant and one covariant index):

Rη
η = 8π

(

Sη
η − 1

p
Sλ

λ

)

δ(η) + nonsingular terms (62)

(in the special case of Schwarzschild geometry we can use the Eddington–Finkelstein

coordinate system which is free of singularities on the horizon; see the Appendix).

Evaluating the l.h.s. of (62) through the formula (recall D = p + 2):

Rr
r = −1

2

1

rD−2
∂r(r

D−2∂rA) (63)

valid for any spherically symmetric metric of the form (31) and recalling r = r0+|η|,
we obtain the following matching condition for the coefficients in front of the δ-

functions on both sides of (62) (analog of Israel junction conditions3,4):

∂ηÃ
∣

∣

η→+0
− ∂ηÃ

∣

∣

η→−0
= − 16πχ

(2a0)p/2−1
, (64)

or, equivalently:

∂rA|r=r0 = − 8πχ

(2a0)p/2−1
, (65)
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where we have used the explicit expression for the trace of the LL-brane energy–

momentum tensor (60):

Sλ
λ = − p

(2a0)p/2−1
χ . (66)

Equation (65) yields a relation between the parameters of the spherically sym-

metric outer regions of “vacuum” solution (31) of Einstein equations (56) and the

dynamical tension of the LL-brane sitting at the (outer) horizon.

As an explicit example let us take (31) to be the standard D = 4 Reissner–

Nordström metric, i.e. A(r) = 1 − 2m
r + e2

r2 . Then Eq. (64) yields the following

relation between the Reissner–Nordström parameters and the dynamical LL-brane

tension:

4πχr2
0 + r0 − m = 0 where r0 = m +

√

m2 − e2 . (67)

Equation (67) indicates that the dynamical brane tension must be negative. Equa-

tion (67) reduces to a cubic equation for the Reissner–Nordström mass m as function

of |χ|:

(16π|χ|m − 1)(m2 − e2) + 16π2χ2e4 = 0 . (68)

In the special case of Schwarzschild wormhole (e2 = 0) the Schwarzschild mass

becomes:

m =
1

16π|χ| . (69)

The particular case of Schwarzschild wormhole
(

with Ã(η) = 1 − 2m
2m+|η|

)

con-

structed above is the proper consistent realization of the Einstein–Rosen “bridge”.27

We refer to the Appendix, where it is explained how the present formalism involving

a LL-brane as wormhole source positioned at the wormhole throat resolves certain

inconsistency in the original treatment of the Einstein–Rosen “bridge.”

Let us observe that for large values of the LL-brane tension |χ|, the Reissner–

Nordström (Schwarzschild) mass m is very small. In particular, m � MPl for

|χ| > M3
Pl (MPl being the Planck mass). On the other hand, for small values of

the LL-brane tension |χ| Eq. (67) implies that the Reissner–Nordström geometry

of the wormhole must be near extremal (m2 ' e2).

Now we will apply the above formalism to construct a rotating cylindrically

symmetric wormhole in D = 4. Namely, we introduce the following modification

of the cylindrically symmetric rotating black hole metric (45) and (46) (cf. (58)

above):

ds2 = −Ã(dt)2 − 2Ẽdt dϕ +
(dη)2

∆̃
+ D̃(dϕ)2 + α2(r(+) + |η|)2(dz)2 , (70)

where

Ã(η) = A(r(+) + |η|) , D̃(η) = D(r(+) + |η|) ,

Ẽ(η) = E(r(+) + |η|) , ∆̃(η) = ∆(r(+) + |η|) ,
(71)
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with A, D, E, ∆ the same as in (46), and r(+) indicates the outer horizon of (45).

From now on the bulk space–time indices µ, ν will refer to (t, η, z, ϕ) (instead of

(t, r, z, ϕ)).

The metric (70), (71) represents two identical copies of the exterior region (r >

r(+)) of the cylindrically symmetric rotating black hole space–time with metric (45),

which are sewed together along the outer horizon r = r(+). The newly introduced

coordinate η (−∞ < η < ∞) will play the role of a planar radial-like coordinate

normal w.r.t. the LL-brane located on the horizon, which interpolates between two

copies of the exterior region of (31) (the two copies transform into each other under

the “parity” transformation η → −η).

In the present case the LL-brane energy–momentum tensor (57) has again the

form (59) with surface energy–momentum tensor (cf. Eq. (60) above; now we have

D = p + 2 = 4):

Sµν = − χ

2a0

|γ|
|γ2 − ω2/α2|

× [−∂τXµ∂τXν + γij∂iX
µ∂jX

ν ]t=τ,η=0,z=σ1,ϕ=σ2+τω/γ , (72)

where (48) and (50) are taken into account. Here once again the dynamical LL-brane

tension χ turns out to be constant unlike the exponential “inflation/deflation” (54)

of the tension of test LL-brane moving in a fixed cylindrical black hole background.

The proof is completely analogous to the one given above for the spherically sym-

metric case.

As in the spherically symmetric case we separate in Einstein equations (56)

explicitly the terms contributing to δ-function singularities on the LL-brane world-

volume (obtaining Eqs. (61)), where again only the (µν) = (ηη) equation contains

nonzero δ-function contributions, i.e. arriving at Eq. (62). In the present case of

cylindrically symmetric geometry (70), (71), Eq. (62) yields (taking into account

the explicit form (72) of the LL-brane surface energy–momentum tensor):

− 1

2
∂2

η∆(r(+) + |η|) = 8πχ
|γ|

|γ2 − ω2/α2| δ(η) + nonsingular terms , (73)

i.e.

∂η∆(r(+) + |η|)
∣

∣

η→+0
− ∂η∆(r(+) + |η|)

∣

∣

η→−0
= −16πχ

|γ|
|γ2 − ω2/α2| , (74)

or, equivalently:

∂r∆(r)|r=r(+)
= −8πχ

|γ|
|γ2 − ω2/α2| . (75)

Equation (75) provides a relation between the parameters α, b, c of the cylindrical

rotating wormhole and the dynamical tension χ of the wormhole-generating LL-

brane. Here by construction the l.h.s. of (75) is strictly positive since r(+) is the

outer horizon of the original metric (70), (71), therefore, again as in the spherically

symmetric case the dynamical LL-brane tension χ at the wormhole throat turns

out to be negative.
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5. Traversability Considerations

Let us now briefly consider the dynamics of a test point particle moving in the

gravitational field of the cylindrically symmetric rotating wormhole constructed in

the previous section. The analysis follows the lines of the standard procedure (see,

e.g. Ref. 42). The pertinent reparametrization invariant test-particle action reads:

Sparticle =
1

2

∫

dλ

[

1

e
ẋµẋνGµν(x) − em2

]

, (76)

where Gµν(x) ≡ Gµν(t, η, z, ϕ) is given by (70), (71) and e denotes the “einbein.”

Variation w.r.t. e yields the “mass-shell” constraint equation:

− Ãṫ2 − 2Ẽṫϕ̇ + D̃ϕ̇2 + α2(r(+) + |η|)2ż2 +
1

∆̃
η̇2 + e2m2 = 0 , (77)

with Ã, D̃, Ẽ, ∆̃ defined through (71) and (46). We have also three Noether con-

served quantities — energy E , axial angular momentum J and momentum Pz along

the z-axis:

E =
1

e
(Ãṫ + Ẽϕ̇) , J =

1

e
(−Ẽṫ + D̃ϕ̇) , Pz =

1

e
α2

(

r(+) + |η|
)2

ż . (78)

Solving (78) for ṫ, ϕ̇, ż, substituting into (77) and employing the particle’s proper-

time s instead of the generic evolution parameter λ (the relation in the present case

being given by ds/dλ = em) we obtain the equation for the particle motion along

η — normal w.r.t. the wormhole throat:

η′2 + Veff(|η|) = Eeff , (79)

where

Veff(|η|) ≡ ∆̃(|η|)
[

1 +
1

m2(r(+) + |η|)2
(

P 2
z

α2
+

(γJ − Eω/α2)2

(γ2 − ω2/α2)2

)]

, (80)

Eeff ≡ (γE − ωJ )2

m2(γ2 − ω2/α2)2
. (81)

The “effective potential” Veff (80) is strictly positive for each η 6= 0 and growing

with the following behavior for small η (i.e. around the wormhole throat) and large

η, respectively:

Veff(|η|)
{

' const |η| for η → 0 ,

' const η2 for η → ±∞ .
(82)

Therefore, there is a whole range of values of the “effective energy” Eeff (81) for

which the test particle periodically traverses the wormhole between the “turning

points” ±ηturning (Veff(| ± ηturning|) = Eeff) within a finite amount of its proper

time s.

On the other hand, for a static observer on either side of the wormhole (which by

construction is a copy of the exterior region of a black hole beyond the outer horizon)

the throat looks the same as a black hole horizon, therefore, it would take an infinite
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amount of the “laboratory” time t for a test particle to reach the wormhole throat.

Thus, when we say that we have constructed traversable wormholes via LL-branes,

we have in mind traversability w.r.t. proper time of travellers.

6. Conclusions

In the present paper we have provided a systematic general scheme to construct

self-consistent spherically symmetric or rotating cylindrical wormhole solutions via

LL-branes, such that the latter occupy the wormhole throats and match together

two copies of exterior regions of spherically symmetric or rotating cylindrical black

holes (the regions beyond the outer horizons).

As a particular case, the matching of two exterior regions of Schwarzschild

space–time at the horizon surface r = 2m through a LL-brane is indeed the self-

consistent realization of the original Einstein–Rosen “bridge,” namely, it requires

the presence of a LL-brane at r = 2m — a feature not recognized in the original

Einstein–Rosen work27 (see Appendix).

The main result here is the construction of self-consistent rotating wormholes

with rotating LL-brane as their sources sitting at the wormhole throats. The surface

tension of the LL-brane is an additional brane degree of freedom, which assumes

negative values on-shell in all cases — both for spherically symmetric as well as

for rotating cylindrical wormholes, but it can be of arbitrary small magnitude.

The latter means that the LL-brane represents an “exotic” matter due to violation

of the null-energy conditions, which is in accordance with the general wormhole

arguments.23

The class of spherically symmetric and rotating cylindrical wormhole solu-

tions produced by LL-brane constructed above combine the features of the origi-

nal Einstein–Rosen “bridge” manifold27 (wormhole throat located at horizon) with

the feature “charge without charge” of Misner–Wheeler wormholes.31 There exist

several other types of physically interesting wormhole solutions in the literature

generated by different types of matter and without horizons. For a recent discus-

sion, see Ref. 43 and references therein.

The geodesic equations for test particles traversing the throats of the presently

constructed wormholes have been briefly studied. We have found that it requires a

finite proper time for a traveling observer to pass from one side of the wormhole to

the other, so that “traversability” for the presently constructed wormholes via LL-

branes is understood as traversability w.r.t. the proper time of traveling observers.

Appendix A. The Original Einstein Rosen “Bridge” Needs a

Lightlike Brane for Consistency

Here we briefly examine the first explicit wormhole construction proposed by Ein-

stein and Rosen27 which is usually referred to as “Einstein–Rosen bridge.” As we

will see in what follows, the Einstein–Rosen “bridge” solution in terms of the original



March 22, 2010 14:53 WSPC/139-IJMPA S0217751X10047762

Spherically Symmetric and Rotating Wormholes Produced by Lightlike Branes 1423

coordinates introduced in Ref. 27 (Eq. (A.1) below) does not satisfy the vacuum Ein-

stein equations due to an ill-defined δ-function contribution at the throat appear-

ing on the r.h.s. — a would-be “thin shell” matter energy–momentum tensor (see

Eq. (A.6) below). The fully consistent formulation of the original Einstein–Rosen

“bridge,” namely, two identical copies of the exterior Schwarzschild space–time

region matched along the horizon must include a gravity coupling to a LL-brane.

In fact, the Einstein–Rosen “bridge” wormhole is a particular case (e = 0) of

our construction of Reissner–Nordström wormhole via LL-brane presented above

in Sec. 4 (cf. Eqs. (64)–(69)). Here we will study separately the Einstein–Rosen

“bridge” construction because of its historic importance.

Let us start with the coordinate system proposed in Ref. 27, which is obtained

from the original Schwarzschild coordinates by defining u2 = r − 2m, so that the

Schwarzschild metric becomes:

ds2 = − u2

u2 + 2m
(dt)2 + 4(u2 + 2m)(du)2

+ (u2 + 2m)2((dθ)2 + sin2 θ(dϕ)2) . (A.1)

Then Einstein and Rosen “double” the exterior Schwarzschild space–time region

(r > 2m) by letting the new coordinate u to vary between −∞ and +∞ (i.e. we

have the same r ≥ 2m for ±u). The two Schwarzschild exterior space–time regions

must be matched at the horizon u = 0.

At this point let us note that the notion of “Einstein–Rosen bridge” in e.g.

Ref. 28, which uses the Kruskal–Szekeres manifold, is not equivalent to the origi-

nal construction in Ref. 27, i.e. two identical copies of the exterior Schwarzschild

space–time region matched along the horizon. The two regions in Kruskal–Szekeres

space–time corresponding to the outer Schwarzschild space–time region (r > 2m)

and labeled (I) and (III) in Ref. 28 are generally disconnected and share only a

two-sphere (the angular part) as a common border (U = 0, V = 0 in Kruskal–

Szekeres coordinates), whereas in the original Einstein–Rosen “bridge” construc-

tion the boundary between the two identical copies of the outer four-dimensional

Schwarzschild space–time region (r > 2m) is a three-dimensional hypersurface

(r = 2m).

In our wormhole construction above (Sec. 4) we have used a different new coor-

dinate η ∈ (−∞, +∞) to describe the two copies of the exterior (beyond the outer

horizon) space–time regions. In the Schwarzschild case we have |η| = r − 2m and,

accordingly, the Schwarzschild metric describing both copies becomes:

ds2 = − |η|
|η| + 2m

(dt)2 +
|η| + 2m

|η| (dη)2 + (|η| + 2m)2((dθ)2 + sin2 θ(dϕ)2) (A.2)

(one can use instead the Eddington–Finkelstein coordinate system; see below). Due

to the nonsmooth dependence of the metric (A.2) on η via |η| it is obvious that the

terms in Rµν containing second order derivative w.r.t. η will generate δ(η)-terms

on the l.h.s. of the pertinent Einstein equations. It is precisely due to the gravity
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coupling to LL-brane, that the corresponding LL-brane surface stress–energy tensor

on the r.h.s. of Einstein equations matches the delta-function contributions on the

l.h.s. In particular, calculating the scalar curvature of the metric (A.2) we obtain

the well-defined nonzero distributional result:

R = − 1

m
δ(η) . (A.3)

The relation between both metrics (A.1) and (A.2) is a nonsmooth coordinate

transformation:

u =

{√
η for η ≥ 0 ,

−√−η for η ≤ 0 ,
i.e. u2 = |η| . (A.4)

Then the question arises as to whether one can see the presence of the LL-brane

also in the Einstein–Rosen coordinates. The answer is “yes,” but with the important

disclaimer that the Einstein–Rosen coordinate u is not appropriate to describe the

“bridge” at the throat u = 0 as it leads to an ill-defined δ-function singularity

(Eq. (A.6) below).

To this end let us consider the Levi-Civita identity (see, e.g. Ref. 44):

R0
0 = − 1√−g00

∇2
(√−g00

)

(A.5)

valid for any metric of the form ds2 = g00(r)(dt)2 + hij(r, θ, ϕ)dxi dxj and where

∇2 is the three-dimensional Laplace–Beltrami operator ∇2 = 1√
h

∂
∂xi

(√
hhij ∂

∂xj

)

.

The Einstein–Rosen metric (A.1) solves R0
0 = 0 for all u 6= 0. However, since√−g00 ∼ |u| as u → 0 and since ∂2

∂u2 |u| = 2δ(u), Eq. (A.5) tells us that:

R0
0 ∼ 1

|u|δ(u) ∼ δ(u2) , (A.6)

and similarly for the scalar curvature R ∼ 1
|u|δ(u) ∼ δ(u2). From (A.6) we conclude

that:

(i) The explicit presence of matter on the throat is missing in the original formu-

lation27 of Einstein–Rosen “bridge.”

(ii) The coordinate u in (A.1) is inadequate for description of the original Einstein–

Rosen “bridge” at the throat due to the ill-definiteness of the r.h.s. in (A.6).

(iii) One should use instead the coordinate η as in (A.2) (or as in (A.8),

(A.9) below), which provides the consistent construction of the original

Einstein–Rosen “bridge” manifold as a spherically symmetric wormhole with

Schwarzschild geometry produced via lightlike brane sitting at its throat in a

self-consistent formulation, namely, solving Einstein equations with a surface

stress–energy tensor of the lightlike brane derived from a well-defined world-

volume brane action. Moreover, the mass parameter m of the Einstein–Rosen

“bridge” is not a free parameter but rather is a function of the dynamical

LL-brane tension (Eq. (69)).
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Let us also describe the construction of Einstein–Rosen “bridge” wormhole using

the Eddington–Finkelstein coordinates for the Schwarzschild metric45,46 (see also

Ref. 28):

ds2 = −A(r)(dv)2 + 2dv dr + r2[(dθ)2 + sin2 θ(dϕ)2] , A(r) = 1 − 2m

r
. (A.7)

The advantage of the metric (A.7) over the metric in standard Schwarzschild co-

ordinates is that both (A.7) as well as the corresponding Christoffel coefficients do

not exibit coordinate singularities on the horizon (r = 2m).

Let us introduce the following modification of (A.7) (cf. (A.2) above):

ds2 = −Ã(η)(dv)2 + 2dv dη + r̃2(η)[(dθ)2 + sin2 θ(dϕ)2] , (A.8)

where

Ã(η) = A(2m + |η|) =
|η|

|η| + 2m
, r̃(η) = 2m + |η| . (A.9)

The metric describes two identical copies of Schwarzschild exterior region (r > 2m)

in terms of the Eddington–Finkelstein coordinates, which correspond to η > 0 and

η < 0, respectively, and which are “glued” together at the horizon η = 0 (i.e.

r = 2m), where the latter will serve as a throat of the overall wormhole solution.

We will show that the metric (A.8), (A.9) is a self-consistent solution of Einstein

equations:

Rµν − 1

2
GµνR = 8πT (brane)

µν (A.10)

derived from the action describing bulk (D = 4) gravity coupled to a LL-brane:

S =

∫

d4x
√
−G

R(G)

16π
+ SLL , (A.11)

where SLL is the LL-brane worldvolume action (8) with p = 2.

Using as above the simplest nontrivial ansatz for the LL-brane embedding co-

ordinates Xµ ≡ (v, η, θ, ϕ) = Xµ(σ):

v = τ ≡ σ0 , η = η(τ) , θ1 ≡ θ = σ1 , θ2 ≡ ϕ = σ2 , (A.12)

the pertinent LL-brane equations of motion yield (in complete analogy with (29)–

(32)):

η(τ) = 0 , ∂τχ + χ

[

1

2
∂ηÃ + 2a0∂η ln r̃2

]

η=0

= 0 . (A.13)

As above, the first Eq. (A.13) (horizon “straddling” by the LL-brane) is obtained

from the constraint equations (24), whereas the second Eq. (A.13) results from the

geodesic LL-brane equation for X0 ≡ v (26) due to the embedding (A.12). Here

again as in Sec. 4, the problem with the discontinuity in the Christoffel coefficients

accross the horizon (η = 0) is resolved following the approach in Ref. 3 (see also the

regularization approach in Ref. 41, App. A), i.e. we need to take the mean value
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w.r.t. η = 0 yielding zero (since both Ã and r̃ depend on |η|). Therefore, once again

as in Sec. 4 we find that the dynamical LL-brane tension χ turns into an integration

constant on-shell.

Taking into account (A.12), (A.13) the LL-brane energy–momentum tensor (57)

derived from the worldvolume action (8) becomes (cf. Eq. (60)):

T µν
(brane) = Sµν δ(η) ,

Sµν =
χ

2a0
[∂τXµ∂τXν − 2a0G

ij∂iX
µ∂jX

ν ]v=τ,η=0,θi=σi ,
(A.14)

where Gij is the inverse metric in the (θ, ϕ) subspace and a0 indicates the integration

constant parameter arising in the LL-brane worldvolume dynamics (Eq. (16)).

Now we turn to the Einstein equations (A.10) where again as in Sec. 4 (cf.

Eqs. (61)) we explicitly separate the terms contributing to δ-function singularities

on the l.h.s.:

Rµν ≡ ∂ηΓη
µν − ∂µ∂ν ln

√
−G + nonsingular terms

= 8π

(

Sµν − 1

2
GµνSλ

λ

)

δ(η) . (A.15)

Using the explicit expressions:

Γη
vv =

1

2
Ã∂ηÃ , Γη

vη = −1

2
∂ηÃ , Γη

ηη = 0 ,
√
−G = r̃2 (A.16)

with Ã and r̃ as in (A.9), it is straightforward to check that nonzero δ-function

contributions in Rµν appear for (µν) = (vη) and (µν) = (ηη) only. Using also the

expressions Sηη = 1
2a0

χ and Sλ
λ = −2χ (cf. Eq. (66)) the Einstein equations (A.15)

yield for (µν) = (vη) and (µν) = (ηη) the following matchings of the coefficients in

front of the δ-functions, respectively:

m =
1

16π|χ| , m =
a0

2π|χ| . (A.17)

where as above the LL-brane dynamical tension must be negative. Consistency

between the two relations (A.17) fixes the value a0 = 1/8 for the integration con-

stant a0.

Thus, we recover the same expression for the Schwarzschild mass m of the

Einstein–Rosen “bridge” wormhole (as function of the dynamical LL-brane ten-

sion) in the Eddington–Finkelstein coordinates (first Eq. (A.17)) as in the standard

Schwarzschild coordinates (Eq. (69)). Moreover, unlike the previous treatment with

the standard Schwarzschild coordinates, there are no coordinate singularities in the

Christoffel coefficients (A.16), so when employing Eddington–Finkelstein coordi-

nates there is no need to use mixed indices (one covariant and one contravariant)

in the Einstein equations unlike (62).
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In conclusion let us note that for the scalar curvature of the Einstein–Rosen

“bridge” wormhole metric in Eddington–Finkelstein coordinates (A.8), (A.9) we

obtain the same well-defined nonzero distributional result as in the case with ordi-

nary Schwarzschild coordinates (A.3):

R = − 1

m
δ(η) . (A.18)
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